defining the early stages of type 1 diabetes

October 10, 2014 Bethesda, MD

Purpose of the Workshop

- Discuss the current understanding of the natural history of type 1 diabetes (T1D) prior to the onset of symptomatic disease
- Inform clinical trial design for interventions in early stages of T1D
- Encourage product development for early stages of T1D
- Aid regulatory decision-making

THE LEONA M. AND HARRY B. HELMSLEY CHARITABLE TRUST

International Society for Pediatric and Adolescent Diabetes

T1D UNMET NEED T1D is Growing Significantly in the United States

T1D INCIDENCE INCREASED 2.6% PER YEAR

Sources: 1. Dabelea D, et al. Prevalence of Type 1 and Type 2 Diabetes Among Children and Adolescents From 2001 to 2009. JAMA. 2014;311(17):1778-1786.; 2. Sources: CDC/NIH Study – Mayer-Davis EJ et al. and Lawrence JM et al. ADA 72nd Scientific Sessions, Phil, PA June 8-12, 2012

T1D UNMET NEED

With Current Tools, Most Not Meeting A1C Targets

Source: T1D Exchange

T1D UNMET NEED Rates of DKA and Severe Hypo Are Too High

Objectives of the Workshop

- Garner common understanding of current data on T1D risk detection, staging, and progression
- Discuss the design and optimization of intervention trials in the early stages of T1D
- Identify tools to improve staging and predict progression of T1D
- Discuss approaches to validate existing tools and develop new tools

Scientific Framework of the Workshop

- T1D is a disease continuum that begins prior to its phenotypic, symptomatic disease
- Risk of developing T1D can be identified and quantified
- T1D has well-defined, reproducible early stages that reach a point of inevitability of symptomatic T1D
- Relative rate of progression to symptomatic T1D can be predicted with appreciable accuracy
- The ability to screen for risk and stage T1D prior to symptomatic T1D has benefit today, and in the future, will provide a unique opportunity to intervene to delay, and ultimately prevent, the onset of clinical symptoms and life-long insulin dependence

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

Overview of Workshop Agenda

- State of Type 1 Diabetes Today
- Screening, Natural History and Risk Detection of the Early Stages of Type 1 Diabetes
- Biomarkers in the Early Stages of T1D
- Recommendation for Classification of Early Stages of Type 1 Diabetes
- Opportunities for Future T1D Prevention Research
- Conclusions and Next Steps

Desired Outcomes of the Workshop

- Provide a new standardized taxonomy and staging approach for human T1D
- Accelerate clinical development of therapies to prevent symptomatic T1D
- Aid design of clinical trials through use of risk profiles, subject stratification, and stage-specific trial endpoints
- Promote precision medicine: Tailoring of optimal therapies to specific individuals at specific stages of T1D
- Provide an approach for the benefit/risk framework in the early stages of T1D

October 10, 2014 Bethesda, MD

Epidemiology of Type 1 Diabetes

Dana Dabelea, MD, PhD Professor of Epidemiology and Pediatrics University of Colorado Denver

Background

- Start of 20th century T1D was rare and rapidly fatal
- Youth were thin, usually white race/ethnicity
- Incidence in 1900 ~ 2/100,000 rising to 7/100,000 by 1920 (Norway)
- International rise in incidence began in mid-20th century
- Incidence from 1960-1996 increased in 24/37 studies averaging 2-4% per year; recent levelling off in Scandinavia countries
- Limited US data- SEARCH registry

Incidence of T1D, by Age and Race/Ethnicity

SEARCH Study Group, JAMA 297(24), 2716, 2007

defining the early stages of type 1 diabetes

Trends in Incidence of T1D Among NHW Youth, 2002-2009

Average annual percent increase: Males: 2.84% (1.12-4.58%) Females: 2.57% (0.68-4.51%)

Trends in T1D Prevalence, 2001-2009, by Sex, Age, and Race/Ethnicity

21.2% relative increase

Dabelea & Mayer-Davis, et al., JAMA, 311 (17), 1778, 2014

Trends in High and Moderate/Low Risk HLA Alleles Colorado 1978 - 2004

Estimated Number of T1D cases in the US, by Race/Ethnicity, 2009

Race/Ethnicity	N of US Population < 20 yrs. In 2009	Type 1 Diabetes N
Total	83,280,391	166,984
Non-Hispanic White	46,859,149	119,387
Hispanic	18,609,959	23,915
Non-Hispanic Black	12,791,402	20,887
Asian/Pacific Islander	4,158,522	2,493
American Indian	861,359	303

Pettitt et al., Diabetes Care: 37(1), 402, 2014

Projections of future burden

Projected Number of Youth < 20 Years With T1D: Increased Incidence Scenario

 Number of US youth with T1D projected to increase 3.3-fold by 2050

EARCH For Projectes in Youth

- Highest among NHW youth (7.04/1000 in 2050)
- Largest relative increase among Hispanic youth (6.6-fold increase)
- US health care systems need to be prepared

Imperatore, et al. *Diabetes Care*, 35(12), 2515, 2012

Presentation and Definition of Diabetes Type

With increasing obesity, youth with T1D are increasingly overweight or obese, causing confusion about the correct diagnosis

Classification of Diabetes Type based on Autoimmunity and Insulin Sensitivity

- DA+ Positive for IA2 or GAD65 autoantibody
- * Insulin Sensitivity = exp [4.64725 0.02032*(waist, cm) 0.09779*(HbA1c, %) 0.00235*(TG,mg/dl)];
- Resistant = IS index below the 25^{th} percentile for NHANES youth
- Sensitive = IS index \geq the 25th percentile for NHANES youth

Dabelea et al, Diabetologia 54: 78, 2011

Baseline FCP and Estimated Decline in FCP According to Etiologic Diabetes Type

	Number	Baseline FCP (ng/ml) [median (IQR)]	FCP Decline (% per month)
Autoimmune + insulin sensitive	688	0.5 (0.7)	4.0 (3.8-4.3)%
Autoimmune + insulin resistant	212	0.8 (1.3)	4.2 (3.8-4.7)%
Non-Autoimmune + insulin sensitive	122	0.7 (1.0)	2.4 (1.8-2.9)%
Non-Autoimmune + insulin resistant	189	3.4 (2.9)	0.7 (0.3-1.2)%

Dabelea et al., Diabetologia, 2012

Risk Factors for Poor Prognosis

Prevalence of DKA at Onset with T1D Over Time, by Age and Race- No Trends Over Time • 31% Prev

- 31% Prevalence overall
- 39% Prevalence in children 0-4 yrs

■ 2002-03 ■ 2004-05 ■ 2008-2010

Dabelea D, Pediatrics; 133: 938, 2014

12-month Frequency of Diabetic Ketoacidosis* According to Age

Age (years)

T1D Exchange

12-month Frequency of Severe Hypoglycemia* According to Age

ADA HbA1c Target Met

Disparities in Prevalence of Poor Glycemic Control (A1c ≥ 9.0%)

Petitti et al., J Pediatr 155(5):668, 2009

SEARCH For Productions in Yourt

p<0.0001

B.A./B.S.

or more

Private

p<0.0001

Prevalence of Cardiovascular Risk Factors in Youth with Diabetes

Rodriguez, et al, Diabetes Care, 2006

MetS: <u>></u> 2 CVD risk factors

Complications patterns

Elevated Albumin/Creatinine Ratio* by Race/Ethnicity Among Youth with T1D

*ACR <u>></u> (30 g albumin/mg creatinine)

All p>0.4 vs. NHW

Maahs et al., Diab Care 30(10):2593-2598, 2007

Prevalence of Diabetic Retinopathy Among Youth with T1D: Pilot Study

Average duration 6.8 years

Mayer-Davis et al., *Diabetic Med* 29(9):1148-1152, 2012

defining the early stages of type 1 diabetes

SEARCH For Products in Youth

Complications by Diabetes Duration in adults with T1D –Type 1 Diabetes Exchange

	<20 yrs (n=1554)	20-<40 yrs (n=2269)	≥40 yrs (n=817)
Treatment for Retinopathy ^a	2.9%	19%	36%
Nephropathy ^b	5.8%	16%	25%
Neuropathy	6.2%	16%	29%
Myocardial Infarction (MI)	1.0%	1.5%	7.5%
Stroke	0.3%	0.9%	2.8%
Coronary Artery Disease, no MI	2.2%	6.7%	23%

^aKnown laser, injection therapy, or vitrectomy in either eye ^bMicro or macroalbuminuria, renal failure (dialysis or postkidney transplant)

Trends in childhood-onset T1D: Mortality and life expectancy

Alleghany County, PA

All cause mortality / 100,000/ yr

Pittsburgh, PA EDC

Life expectancy (yrs) by birth cohort

Secrest et al., Diabetes, 59, 3216, 2010

Miller et al., Diabetes, 61, 2987, 2012

Conclusions

- Increasing numbers of youth with T1D, especially among minorities
- T1D now more difficult to diagnose due to increasing obesity, especially among minorities – diabetes autoantibodies are needed
- High burden of risk factors for future complications, worse in minority youth with T1D
- Subclinical complications present at young age, increasing with age and diabetes duration
- Limited data on complications & mortality in contemporary, diverse cohorts – major research need
- Shifts suggest that higher costs and greater societal burden are very likely in the next 20-30 years

Overview of Natural History of Type 1 Diabetes: Lessons for Staging

Mark Atkinson, PhD The Departments of Pathology and Pediatrics The University of Florida

Classic Model of Type 1 Diabetes Pathogenesis

Eisenbarth, NEJM 1986

type 1 diabetes

Natural History Biomarkers Derived from the Classic Model of T1D Pathogenesis

Eisenbarth, NEJM 1986

42

type 1 diabetes

Current Model for the Pathogenesis and Natural History of Type 1 Diabetes

Atkinson, M; Eisenbarth, G.S.; Michels, A. Lancet, 2014

early stages of type 1 diabetes

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

Biomarkers to Refine Type 1 Diabetes Staging

Time

Practical Evolution of Biomarkers for Type 1 Diabetes

Current Model for the Pathogenesis and Natural History of Type 1 Diabetes

Atkinson, M; Eisenbarth, G.S.; Michels, A. Lancet, 2014

early stages of type 1 diabetes

Potential "Future" Biomarkers Derived from Current Model for the Pathogenesis and Natural History of Type 1 Diabetes

Maternal Factors

48

Precipitating Events Might Begin In-Utero

- Born to diabetic fathers vs. mothers
- Diabetic mother diagnosed less than 8 years of age vs later age
- First born
- Increased maternal enterovirus infections
- ABO incompatibility
- Increasing maternal age at delivery
- Season of delivery
- Early cessation of breast feeding

Potential "Future" Biomarkers Derived from Current Model for the Pathogenesis and Natural History of Type 1 Diabetes

Atkinson, M; Eisenbarth, G.S.; Michels, A. Lancet, 2014

Genetic Linkage to T1D

Concannon P , Rich S, Nepom GT N Engl J Med 2009;360:1646-1654

The NEW ENGLAND JOURNAL of MEDICINE The Evolution of Type 1 Diabetes Genetics

1980's to Present – Biomarkers that Define Risk for Type 1 Diabetes

> Note: Too many; Too little OR; Notions of GWAS "Bust"

Future – Genotype/Phenotype Studies in Type 1 Diabetes

Genetic Linkage to T1D Abnormalities

Atkinson, Eisenbarth, Michaels 2014 Lancet

early stages of type 1 diabetes

Potential "Future" Biomarkers Derived from Current Model for the Pathogenesis and Natural History of Type 1 Diabetes

53

Beyond Triggering, Environment Likely Contributes throughout Natural History of T1D

Omega-3 Fatty Acids

Microbiome

Potential "Future" Biomarkers Derived from Current Model for the Pathogenesis and Natural History of Type 1 Diabetes

Atkinson, M; Eisenbarth, G.S.; Michels, A. Lancet, 2014

Not All Humans are "Created Equal", in terms of Beta Cell Mass nor in Their Ability to Replicate Beta Cells

Formation of a Human β -Cell Population within Pancreatic Islets Is Set Early in Life

Brigid E. Gregg, Patrick C. Moore, Damien Demozay, Ben A. Hall, Mei Li, Aliya Husain, Amy J. Wright, Mark A. Atkinson, and Christopher J. Rhodes

56

Smaller Pancreas in the Natural History of T1D

Figure. Pancreas Weight of Organ Donors by Disease Status Using an Analysis of Covariance Model

Campbell-Thompson, JAMA. 2012

Beta Cell Mass may be a Key Risk Factor in Time of Development of Symptomatic T1D – A Current Hypothesis

Time

Battalia M. & Atkinson M. (submitted)

Are Early Stages of T1D Associated with a **Relapsing/Remitting Pattern?**

Type 1 Diabetes – Vitiligo of the Pancreas?

Eisenbarth,

Atkinson,

nPOD Unpub.

Pancreatic pathology suggests:

- Sporadic islet destruction (lobular) • Perhaps a disease of
- relapse/remission?

Are Early Stages of T1D Associated with a Relapsing/Remitting Pattern?

time

Von Herrath, 2014, Diabetologia

Beta Cell Destruction may be Homicide, Suicide, or Failed Mechanisms of Self-Protection

- Glut 2 Receptor
- Empty Beta cells
- mRNA abberancies
- ER Stress
- UPR

Disease Progression Healthy ۲ Stressed Inflammatory cvtokines Oxidative stress • ER stress Clinically Other Depressed metabolic stress Decreased Insulin secretion Suicide

Courtesy, Al Powers: Atkinson, M. et al Diabetes, 2012 – Brehm Coalition

Potential "Future" Biomarkers Derived from Current Model for the Pathogenesis and Natural History of Type 1 Diabetes

62

Multiple Autoantibodies are Associated with Faster Progression to Symptomatic T1D in T1D Relatives

Numbers 1– 4 are number of autoantibodies at screening. Curves indicate occurrence of type 1 diabetes over follow-up (n = 29,035). DPT-1 = Diabetes Prevention Trial–Type 1 *Diabetes Care* 2009;32:2269–2274.

Potential "Future" Biomarkers Derived from Current Model for the **Pathogenesis and Natural History of Type 1 Diabetes**

type 1 diabetes

Rising HbA1c Can Precede Symptomatic T1D

Stene et al DAISY. Pediatr Diab 2006

Potential "Future" Biomarkers Derived from Current Model for Improved Staging of Type 1 Diabetes

Maternal Factors Epigenetics Genotype/Phenotype

Overview of Natural History of Type 1 Diabetes: Lessons for Staging

Thank You

Assessment of T1D Risk in Newborns

Marian Rewers, MD, PhD Barbara Davis Center for Childhood Diabetes University of Colorado

Risk of Type 1 Diabetes by Age 20 Years

	T1 DM risk by age 20 yr
General Population	1:250
Offspring of women with T1D	1:50
Offspring of men with T1D Siblings	1:15 1:15
Monozygotic twins	1:3
No family history of T1D HLA-DR3/4,DQB1*0302 genotype	1:15

Prediction of T1D under age 30 years in the U.S. (n= 25,000/yr)

Genome-wide Associations in T1D

Genetic markers and the Risk of T1D

Adjusting for sex, ethnicity, family history of T1D

DAISY Strip (18 BSA-SSO probes) for DRB1 and DQB1

Epitopes:	W L F	W P R	Y S T S	V H	Y S T G	G Y K	K D F	E E V	K G R	R- E	E R H F H	V D N N Y C	V D T Y C	G	V	LGPPA	E G T R A	DQB1ALL
DR Type	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	<mark>18</mark>
1	Χ												Χ	+/-	+/-			Χ
<mark>2 (0602)</mark>		Х											Χ	+/-	+/-		Х	Х
2#		Χ											X	+/-	+/-			Χ
3			Х						Χ			X		+/-	+/-			Χ
<mark>4 (0302)</mark>				Χ									Χ	+/-	+/-	Х		Χ
4*				Χ									Χ	+/-	+/-			Χ
0403/06/11				Χ						X			X		Χ	+/-		Χ
0407				Χ						X			Χ	Χ		+/-		Χ
11/13/14			Χ							+/-			X	+/-	+/-	+/-	+/-	Χ
12					Χ						X		Χ		+/-			Χ
7						Χ								Χ				Х
8/1404/1411					X								Χ	+/-	+/-	+/-		Χ
9							Χ							Χ				Χ
10								X					X	X				Х

M Rewers et al. Newborn screening for HLA markers associated with IDDM Diabetes Autoimmunity Study in the Young (DAISY). *Diabetologia 1996;39:807-812*

HLA-Defined T1 DM Risk Groups DAISY, Denver Population, n=31,000

IDDM risk by age 20	HLA-DR	DQB1	Frequency %
High 1:15	3/4	0201/0302	2.4
Moderate	4/x	0302/	12.7
1:60-1:200	4/4	0302/	3.0
	3/3	0201/0201	1.4
Average 1:300	3/x	0201/	12.5
	3/4	0201/not 0302	1.0
Lower than 1:300	4/x, 4/4	/not 0302	6.6
	2/x others	0602	60.4

DAISY Newborn HLA Screening for Genetically High-risk Children

~10% of children with the highest T1D risk

		Genotype	e frequency
DR-DQA1-DQB1 / DR-DQ	QA1-DQB1	General	T1D
		Population	<15 yrs of age
4- 301-302 / 3- 501-201		2.3%	32.7%
4- 301-302 / 4- 301-*		3.0%	10.4%
4- 301-302 / 8- 401-402		1.5%	7.0%
4- 301-302 / 1- 101-501		2.3%	2.5%
4-301-302 / 9-301-303		0.3%	1.1%
<u>3- 501-201 / 3- 501-201</u>		1.3%	7.5%
	Total	10.7%	61.2%

Islet Autoantibodies

ElectroChemiLuminescent

Clinical Centers

Colorado

- ★ Finland
- 📩 Georgia/Florida
- 🕇 Germany
- 🗡 Sweden
- **+** Washington

Data Coordinating Center, Tampa, FL

The Environmental Determinants of Diabetes in the Young

> NIDDK NIAID NICHD NIEHS CDC JDRF

TEDDY Newborn HLA Screening for Genetically High-risk Children 2004-2010

General Population n= 418,709 First-Degree Relatives n= 6,417

DRB1-DQA1-DQB1/DRB1-DQA1-DQB1 4-301-302 / 3-501-201 4-301-302 / 4-301-302 4-301-302 / 8-401-402 3-501-201 / 3-501-201 DRB1-DQA1-DQB1/DRB1-DQA1-DQB1

4-301-302 / 3-501-201 4-301-302 / 4-301-302 4-301-302 / 4-301-201 4-301-302 / 8-401-402 4-301-302 / 1-101-501 4-301-302 / 13-102-604 4-301-302 / 4-301-304 4-301-302 / 9-301-303 3-501-201 / 9-301-303

5% of the population 50% of T1D cases 22% of the FDRs 70% of T1D cases Development of islet autoimmunity and T1D among TEDDY participants

N=8677 *August 2014 n*=603 *n*=191 Expected by age 15 y: n~800 n~400

TEDDY protocol

Blood

6 9 12 48 q6 months (q3 month in Ab+ children)

.....15 yrs

<u>Clinic visits every 3 months (including ab+ children older than 4):</u> Blood for: GADA, IAA, IA-2A, ZnT8; DNA, mRNA, infectious agents, HbA1c, PBMC, erythrocytes, storage plasma/serum;

Nasal swabs, tap water, toenail clippings, and **salivary** cortisol. **urine** samples; DNA from FDRs

Interviews: medications, immunizations, infections, family history; **Diet:** maternal pregnancy diet; child's 24 hr recall, 3 day FFQ; **Physical activity** quest., accelerometer; Negative life events, parental anxiety, depression.

Summary:

- No simple 'genetic screening' for T1D
 - Polygenic disease
 - HLA region explains >50% of familiar clustering
 - HLA-DR,DQ-based newborn screening is 50-65% sensitive, but positive predictive value only 2-3%
 - Non-HLA markers may slightly improve prediction
 - Ethnic differences in HLA markers of T1D risk
- Islet autoantibody screening in combination with HLA pre-screening:
 - Sensitivity: ~60%
 - Specificity: ~35% (x2); up to ~50% (x3-4 tests)

Should gene-environment interactions be accounted in T1D risk prediction?

M Rewers 2013

Extreme Risk for Diabetic Autoimmunity in DR3/4 Siblings

Aly et al, PNAS 2006

Questions?

Barbara Davis Center for Childhood Diabetes www.barbaradaviscenter.org marian.rewers@ucdenver.edu

defining the early stages of type 1 diabetes

Public Health Screening for Early Type 1 Diabetes

Anette-Gabriele Ziegler Helmholtz Zentrum München Klinikum rechts der Isar Technische Universität München

Children with Multiple Islet Autoantibodies Progress to Symptomatic Diabetes

JAMA. 2013;309(23):2473-2479.

Also in General Population Children

JAMA. 2013;309(23):2473-2479

5- and 10-Year Risk of Progression to Symptomatic T1D with Multiple Islet Autoantibodies ≤ Age 5 Years is 51% and 75%

And the Lifetime Risk Approaches 100%

George Eisenbarth *"The clock to T1D has started when islet antibodies are first detected".* Paradigm shift for staging of type 1 diabetes before clinical onset

Is Early Staging of T1D on a Public Health Level Feasible?

When ? What test ? Expected prevalence ? Expected sensitivity ?

Multiple Islet Autoantibodies Are Detected Early in Life

Incidence of islet autoantibodies in cases that become multiple Abs amongst unselected FDRs

Also In The General Population

TEDDY study, IDS, 2013

Age 3 and 4 years may be an optimal age for early staging

Incidence of islet autoantibodies in cases that become multiple Abs amongst unselected

Compulsory Preventive Check-ups in Germany U1-U6 age 0 to 12 months U7 age 21-24 months U7a age 34-36 month U8 age 46-48 month U9 age 60-64 month U10 age 7-8 years U11 age 9-10 years

2/3 of multiples islet autoantibodies occur before age 4 years (JAMA).

11 % of youth T1D is before age 3 years

Validated Assay for Early Staging

(screening for multiple islet autoantibodies)

*(Bonifacio et al., J Clin Endocrinol Metab 2010; Achenbach et al., Diabetologia 2009; Ziegler et al., Diabetes 1999).

Assay Performance of ELISA (RSR Ltd) for Combined Detection of GADA and IA2A (DASP/IASP workshops 2012)

Estimated Prevalence of Multiple Islet Autoantibodies in General Population

Estimated prevalence at age 3-4 years: **0.3%** or **300** children from 100,000 screened

Basis for estimate:

0.45% of children with diabetes between 3 and 20 years
2/3 are positive for multiple islet autoantibodies by age 3-4
0.0045*100,000*0.667 = 300

Estimated Progression to Symptomatic T1D Risk is persistently around 11% per year

300 20.0 Number Diabetes-free 167 17.5 94 15.0 12.5 10.0 10 7.5 5.0 2.5 0.0 1 9 10 11 12 13 14 15 0 8 5 10 15 20 25 30 35 40 45 50 0 Year of follow-up after seroconversion Follow-up (years)

Diabetes incidence per 100 per year

Design of Model Project Diabetes 2015

Information for pediatricians and parents:

Flyer, Public announcements, Bavarian Pediatric Convention

Screening: offered to all children in Bavaria at their U7a (age 3 years) und U8 (age 4 years) check-ups Offered to 200,000 children in total (100,000 at U7a and 100,000 at U8)

Inclusion criteria: Children living in Bavaria Written informed consent of one parent Capillary blood 200 µl Questionnaire (1 page)

Impact of Early Staging of T1D on a Public Health Level

Typ 1 Diabetes: Früh erkennen – Früh gut behandeln

- prevent diabetic ketoacidosis on a population level, reducing family burden and health care cost
- help set new standards for early diagnosis of T1D and teaching
- assess the impact of **environmental determinants** for pre-T1D for which a population based approach is most suitable (air pollution, population density)
- provide a **validation cohort** for findings from other cohorts such as TEDDY
- provide an unprecedented opportunity to design secondary prevention studies to prevent insulin dependence on a broad population based level and with relatively rapid recruitment capacity.

Dimelli and DPV Diabetes Register in Bavaria

>95% of all diabetes cases before age 20 years in Bavaria are captured by Dimelli or DPV registers

Allows:

- validation of estimates
- Comparisons between screened and followed vs non-screened and non followed diabetes cases

What about children with single islet autoantibodies?

Certain single Ab positives have a risk

JAMA. 2013;309(23):2473-2479.

What about children with single islet autoantibodies?

Certain single Ab positives have a risk

- Multiple at seroconversion (SC)
- --- IAA at SC, multiple later
- GADA at SC, multiple later
- High risk single (high affinity, trunc GAD, ELISA GAD, IA2)
- Low risk single (low affinity or wrong epitope)

Pre-selection by genetic testing ? Feature Ranking of Type 1 Diabetes Susceptibility Genes For Improved Risk Prediction

HLA + 40 non-HLA SNPs

multivariable logistic regression and Bayesian feature selection

Winkler, Krumsiek, Diabetologia 2014

Prediction of type 1 diabetes using HLA class II genotypes and 40 minor susceptibility genes

Higher discrimination when SNP genotyping of the 40 minor susceptibility genes was added to the HLA risk model (p value of increase: 2.6x10⁻¹¹)

Selection of a reduced set of SNPs with comparable prediction quality **Feature ranking**

model

90

70

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

0.01 -

0.00 -

10 20

30

40 50

Population Based Screening Application of the Top 10 Model

10 SNP set: HLA, PTPN22, INS, IL2R, ERBB3, ORMDL3, BACH2, IL27, GLIS3, RNLS

Screening with the top 10 model

72 will develop islet antibodies by age 3 years

Population Based Screening Application of the Top 10 Model

10 SNP set: HLA, PTPN22, INS, IL2R, ERBB3, ORMDL3, BACH2, IL27, GLIS3, RNLS

Screening with the top 10 model

100 will develop islet antibodies by age 3 years

Helmholtz Zentrum Munich /Forschergruppe Diabetes eV

Peter Achenbach Christiane Winkler Andreas Beyerlein Florian Haupt Ramona Puff Jan Krumsiek Fabian Theis

Center for Regenerative Therapies Dresden Ezio Bonifacio Anne Eugster

Collaborators Marian Rewers and DAISY team Olli Simell and DIPP team John Todd

Screening for Risk of T1D: Relatives of Individuals with T1D

Carla Greenbaum

Diabetes TrialNet and Benaroya Research Institute

Agenda

- Rational for testing relatives
- Historical perspective: Diabetes Prevention Trial
 - Primary results
 - Key information about Natural History of Disease
- Current screening for risk: Diabetes TrialNet
 - Scope of screening effort
 - Algorithm to determine risk
 - Clinical Trial Enrollment

RATIONALE FOR TESTING RELATIVES

Why Test Relatives?

- Comprehensive "genetic" screening
 - Assumption that T1D genes are enriched in families, both those we know and don't know
- Knowledge and experience about living with T1D
 - Assumption that family members are most committed to finding a cure and prevention strategy
- Several decades of robust data about the pre-clinical natural history of disease
- Relative risk of disease ~15X higher than risk in general population

RATIONALE FOR TESTING RELATIVES

T1D non-HLA Genetic Associations

Why NOT test relatives?

~85-90% of those who will get T1D do NOT have a relative with T1D

RATIONALE FOR TESTING RELATIVES

Diabetes Prevention Trial (DPT-1)

- AIM: Identify relatives at risk for T1D to enroll in one of two randomized clinical trials testing:
- Can parenteral insulin delay or present the onset of T1D in those at high risk of disease?
- Can oral insulin delay or prevent the onset of T1D in those at intermediate risk of disease?

Diabetes Prevention Trial (DPT-1)

- Begun in early 1990's using "state of the art" antibody testing
 - Islet cell antibodies (ICA)
 - Insulin autoantibodies (IAA)
- Tested 103,391 relatives over 8 years for presence of ICA and IAA → Antibody positive: 3,483
- N= 339 (high 5 year risk >50%) randomized in Parenteral Insulin Trial and N=372 (intermediate 5 year risk 25-50%) randomized in Oral Insulin Trial
- Primary Results: Neither Parenteral or Oral Insulin delayed or prevented onset of disease

Diabetes Prevention Trial (DPT-1)

 Increased knowledge despite negative trials: Laying the groundwork for future studies

HISTORICAL PERSPECTIVE: DIABETES PREVENTION TRIAL: KEY INFORMATION ABOUT NATURAL HISTORY

HISTORICAL PERSPECTIVE: DIABETES PREVENTION TRIAL: KEY INFORMATION ABOUT NATURAL HISTORY

ICA+, IAA+ relatives 5-year risk estimates actual with low beta cell results function or IGT ICA+, IAA+ relatives 60% **ICA+** relatives 35% >50% 25-50% LOW INTERMEDIATE HIGH

TYPE 1 DIABETES TRIALNET

TrialNet Goals

- Delay, prevent, or modify the course of T1D
 - Explore new therapies in:
 - Secondary prevention antibody-positive relatives "at risk" of T1D
 - Primary prevention high genetic risk infants
 - New-onset T1D
- Further define epidemiology, natural history, and risk factors of T1D
- Advance translational science to lay groundwork for future generations of trials and future clinical use

CURRENT SCREENING FOR RISK: DIABETES TRIALNET: SCOPE OF SCREENING EFFORT

PREVENTION

CURRENT SCREENING FOR RISK: DIABETES TRIALNET: ALGORITHM TO DETERMINE RISK

TNNHS: Cumulative Ab seroconversion by annual rescreen number by age (A) and cost of rescreening by age at initial screen (B).

Vehik K et al. Dia Care 2011;34:1897-1901

Consensus Conference

WHEN: January 14, 2015 8:30 am - 4 pm ES1

LOCATION:

Hilton Mark Center 5000 Seminary Road Alexandria, VA 22311

OPEN REGISTRATION:

To register, please contact Sonya Pendleton at spendleton a diabetes.org or 703 549 1500 ext. 2311 by December 1, 2014

Exploring the Drug Development Pathway for Type 1 Diabetes in the Pediatric Population

Co-Chairs: Carla Greenbaum, MD and Diane Wherrett, MD, FRCPC

STATEMENT OF NEED

Despite medical advances, type 1 diabetes (TID) remains a significant burden on individuals with TID and their families; thus there is need for disease modifying therapy. While autoimmune diabetes occurs in all age groups, emerging data highlights important differences in pathophysiology and clinical course according to age at diagnosis. Consequently, the effectiveness of disease modifying treatments is expected to be different between children and adults. Understanding the development and regulatory pathways for TID disease modifying therapies according to age will enable industry, academia, funders, advocacy organizations, and regulators to collectively translate new science to clinical care.

OBJECTIVES

The objectives for this Consensus Conference are to characterize the fundamental differences in TID between children and adults and to propose a thoughtful approach for developing disease modifying therapeutics in children before or after the onset of clinical TID; encompassing a development and regulatory pathway considering both safety and efficacy. It is the intent that the Consensus Conference Report will be published in Diabetes Care and notable pediatric journals.

TrialNet Pathway to Prevention

Group	Five-year risk of T1D
0 ab+	< 1%
1 ab+, NGT	3%
≥ 2ab+, NGT	35%
≥ 2ab+, AGT (dysglycemia)	75-80%

TrialNet Pathway to Prevention

Group	Five-year risk of T1D	Prevention Trial
0 ab+	< 1%	Not currently eligible; rescreen until age 18
1 ab+, NGT	3%	Not currently eligible; annual monitoring
		TrialNet

CURRENT SCREENING FOR RISK: DIABETES TRIALNET: RISK/TRIALS

TrialNet Pathway to Prevention

Group	Five-year risk of T1D	Prevention Trial
≥ 2ab+, NGT	35%	Oral Insulin (if mIAA+)
		Abatacept
≥ 2ab+, AGT (dysglycemi a)	75-80%	Teplizumab

Screening for Risk of T1D: Relatives of Individuals with T1D

Thank You

Predicting Rate of Progression to Type 1 Diabetes

Jeffrey Krischer University of South Florida

Why predict rates of progression?

 Identifying a population with elevated rate of progression allows the test of interventions to alter disease progression.

Need to identify <u>high risk</u> population to justify <u>high</u> <u>risk</u> interventions.

It is easier to measure the effect of an intervention in a higher risk population.

But we already know how to predict who is susceptible to get T1D

- Genetics Human leukocyte antigen (HLA) class II genes
- Age 4-7 and 10-14 years
- Family History
- Geography

Biomarkers

Immunologic

ICA, GAD, IA2, IA, ZnT8

Metabolic

Insulin, glucose, C-peptide, HbA1c

The appearance of these markers, either singly or in combination predicts the risk and the rate of T1D development.

The problems of sensitivity and specificity

- Markers that are more specific, P(D|M), are generally less sensitive: P(M|D) is low.
- Is this a generalizability problem?

The problem of sensitivity and specificity

 Markers that are more specific, P(D|M), are often less frequent: P(M) is low.

P(D|M) = P(M|D) P(D) / P(M)

as
$$P(D|M) \longrightarrow 1$$
,
then $P(M) \longrightarrow P(D)$

This is a cost problem requiring screening large numbers.

An Example from TEDDY

Human leukocyte antigen eligibility for First Degree Relatives (FDR) and General Population (GP) newborns:

Haplotype genotypes	Abbrevi ation	FD R	G P	
DR4-DQA1*030X-DQB1*0302/DR3-DQA1*0501- DQB1*0201	DR3/4	Y	Y	
DR4-DQA1*030X-DQB1*0302/DR4-DQA1*030X- DQB1*0302	DR4/4	Y	Y	
DR4-DQA1*030X-DQB1*0302/DR8-DQA1*0401- DQB1*0402	DR4/8	Y	Y	
DR3-DQA1*0501-DQB1*0201/DR3-DQA1*0501- DQB1*0201	DR3/3	Y	Y	
DR4-DQA1*030X-DQB1*0302/DR4- DQA1*030X- DQB1*020X	DR4/4b	Y	N	8
DR4-DQA1*030X-DQB1*0302/DR1- DQA1*0101-	DR4/1	Y	Ν	

An Example from TEDDY

	Specificity	<u>Sensitivity</u>
DR 3/4 or DR 4/4	97%	39%
9 TEDDY Genotypes (FDR)	90%	69%
4 TEDDY Genotypes (GP)	94%	50%

An Example from TEDDY

	Specificity	<u>Sensitivity</u>	<u>P(M)</u>
DR 3/4 or DR 4/4	97%	39%	2.9%
9 TEDDY Genotypes (FDR)	90%	69%	22%
4 TEDDY Genotypes (GP)	94%	50%	4.8%

Markers of Diabetes Risk

Family history	<u>Risk</u>	Prevalence
None	0.3%	85%
Some	3-5%	15%
1 st degree		
 Multiple affected 	20-50%	
• Sib	8%	
 Identical Twin 	30-70%	
 Offspring 	3-5%	

Immune Markers of Symptomatic Diabetes Risk in First Degree Relatives

5-Year Risk Prevalence

Single antibody <10% 3.1%
Multiple antibodies 30-50% 2.2%

Even in the presence of other risk markers, age is important.

T1D-free curves by age categories among first degree relatives with multiple autoantibodies.

Metabolic Markers of Symptomatic Diabetes Risk in Multiple Antibody Positive, First Degree Relatives

5-Year Risk Prevalence

Abnormal Oral Glucose Tolerance Test 75-80% 0.7%

5-Year Risk of Progression to Symptomatic T1D in T1D Relatives with Dysglycemia is 75-80% (DPT-1) 1.0 0.9 Proportion without type 1 diabetes 0.8 0.7 0.6 0.5 **Normal Glucose Tolerance** 0.4 Value< 0.001 (Log Rank Test) 0.3 Indeterminate only 0.2 Number at Risk Combined 35 16 51 19 0.1 64 20 T only 410 0.0 Years Followe STRATA: Comb IFG + (IGT or Indet) Indet Only - IGT Only

Again, age is a modifying factor.

HbA1c vs. T1D

Is HbA1c 6.5% a good threshold?

N=587

	T1D+ by	T1D- by	
	OGTT	OGTT	
HbA1c >=6.5	32	11	43
HbA1c <6.5	103	441	544
	135	452	587
 N=554 with multiple p	airs from same	patient	

Sensitivity = 23.7% Specificity = 97.6% PPV = 0.74

Diabetes TrialNet
N=734

	T1D+ by	T1D- by	
	OGTT	OGTT	
HbA1c >=6.5	18	2	20
HbA1c <6.5	50	664	714
	68	666	734
N=676 with multiple p	airs from same	patient	

Sensitivity = 26.4% Specificity = 99.7% PPV = 0.90

N=426*

	T1D+ by	T1D- by	
	OGTT or	OGTT	
	Physician		
HbA1c >=6.5	5	0	5
HbA1c <6.5	8	413	421
N-10 with multiple poi	13	413	426

Sensitivity = 38.5% Specificity = 100.0% PPV = 1.0

N=10 with multiple pairs from same patient

* Control arm only

HbA1c vs. T1D

<u>Is HbA1c 5.7% a good threshold?</u>

N=587

	T1D+ by	T1D- by	
	OGTT	OGTT	
HbA1c >=5.7	99	209	308
HbA1c <5.7	36	243	279
	135	452	587
N=554 with multiple p	airs from same	patient	

. .

Sensitivity = 73.3% Specificity = 53.8% PPV = 0.32

Diabetes TrialNet
N=734

T1D+ by	T1D- by	
OGTT	OGTT	
44	63	107
24	603	627
68	666	734
	OGTT 44 24	OGTT OGTT 44 63 24 603

Sensitivity = 64.7% Specificity = 90.5% PPV = 0.41

N=426*

	T1D+ by	T1D- by	
	OGTT or	OGTT	
	Physician		
HbA1c >=5.7	6	46	52
HbA1c <5.7	7	367	374
	13	413	426

Sensitivity = 46.2% Specificity = 88.9% PPV = 0.12

N=10 with multiple pairs from same patient

* Control arm only

A confession.....

- Much of the data available on risk markers has been obtained from studies of first degree relatives.
- Much of that data is available only on antibody positive individuals.
- Much of that data is from cross-sectional studies.
- So it is natural to ask, what about combinations of markers?

DPTRS risk score derived from DPT-1 by Sosenko et al.

DPTRS=1.569*log(bmi) -0.056*age +0.00813*sumglu^ +0.476*log(fastcpep) -0.0848*total c-peptide^

Product-Limit Survival Estimates With Number of Subjects at Risk and 95% Confidence Limits 1.0 0.8 Survival Probability 0.6 0.4 0.2 + Censored Logrank p <.0001 0.0 з o Follow-Up Time (Years) dptrs - 3

DPTRS	T1D Risk	Prevalence
< 6.50	0.09	56%
≥ 6.50 and ≤ 7.50	0.40	27%
> 7.50	0.77	18% 149

sum from 30 to120 minutes/100from an OGTT

DPTRS risk score derived from DPT-1 by Sosenko et al.

The DPTRS is a continuous measure of risk and exhibits the same trade-off between sensitivity and specificity

Combinations of Diabetes Risk Markers: Recursive partitioning

Subjects in Control Groups only(N=356),IVGTT Measurements Excluded 1 glu2h p < 0.001 ≤ 127 > 127

Recursive Partitioning Risk Groups

Low risk: (Five-year risk=2.5%)

Two hour glucose <=127 mg/Dl and age >19.8 years

Moderate Risk: (Five-year risk= 29%)

Two hour glucose <=127 mg/Dl and age <19.8 years and either (HbA1c>5.1% and peak C-peptide>4.6 nmol/L) or HbA1c<=5.1%.

High risk: (Five-year risk: 74.8%)

Two hour glucose >127 mg/Dl or (Two hour glucose <=127 mg/Dl and age <19.8 years and HbA1c>5.1% and peak C-peptide<=4.6 nmol/L)

RPA classification is based on 2-hour glucose (127 mg/DL), age at baseline (19.825 years), HbA1c (5.1%) and Peak C –peptide (4.6) derived from DPT-1

RPA classification	T1D Risk	Prevalence
Low Risk	0.03	12%
Medium Risk	0.29	41%
High Risk	0.75	47%

Relative Comparison of the DPTRS and RPA Analyses

DPTRS	T1D Risk	Prevalence
< 6.50	0.09	56%
≥ 6.50 and ≤ 7.50	0.40	27%
> 7.50	0.77	18%

RPA classification	T1D Risk	Prevalence
Low Risk	0.03	12%
Medium Risk	0.29	41%
High Risk	0.75	47%

The Effect of Time Diabetes Risk Markers

Risk based upon baseline or screening

1 2 3 4 5

The Effect of Time Diabetes Risk Markers

Diabetes risk is not static

The Effect of Time Diabetes Risk Markers

What we observe is consequence of crosssectional screening

Future Directions

- Identify markers with higher specificity and prevalence
 - Limited by underlying incidence of T1D
- Markers that are more homogeneous p=.5 has highest s.d., moving to the extremes reduces sample size.
- Markers that are easier to screen for e.g. HbA1c vs. IGT

Future Directions

- Expanding/testing generalizability to the larger cohort of individuals that will develop T1D
 - If an intervention works/doesn't work in a particular risk group what does this tell us about whether it will work in another risk group? E.g., anti-CD3 or antigen therapy going in either direction.

Where we are

- Use risk markers as eligibility criteria for prevention studies
 - 1 ab none yet
 - 2 ab oral insulin, abatacept
 - IGT anti CD-3
- Now beginning to use risk markers as surrogate end points
 - abatacept

The end

Grateful acknowledgements:

The DPT-1 Study Group The TrialNet Study Group

Use of risk detection and staging for design of prevention clinical trials

Carla Greenbaum

Diabetes TrialNet and Benaroya Research Institute

Agenda

- Current Prevention Trials: Rationale, planning parameters
 - Oral Insulin
 - Abatacept
 - Teplizumab
- Additional Planned Prevention Trials: Rationale, planning parameters
 - Silent Diabetes
- Newer Considerations
 - Other intermediate risk parameters
 - Risk beyond 5 years
 - Islet autoimmunity as a disease
 - Islet autoimmunity prevention trial

TrialNet Pathway to Prevention

Group	Five-year risk of T1D
0 ab+	< 1%
1 ab+, NGT	3%
≥ 2ab+, NGT	35%
≥ 2ab+, AGT	75-80%
(dysglycemia)	Type 1 Diabetes

Current TrialNet Prevention Protocol Considerations

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

ORAL INSULIN PREVENTION TRIAL

- Population to be included
 - Risk estimate
 - Entry criteria
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- 5-year risk of T1D: 35%
- Relative with T1D
- mIAA+ and at least one other antibody
- Normal Glucose Tolerance

- Population to be included
 - Risk estimate
 - Entry criteria
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Primary stratum
 - mIAA+, ICA+, NGT, nl insulin secretion*
 - mIAA+, ICA512ab+, GAD65ab+, NGT, nl FPIR
- Other stratum
 - Same antibodies, NGT, below threshold FPIR
 - mIAA+, ICA512ab+ OR GADab+; NGT, nl FPIR
 - mIAA+, ICA512ab+ OR GADab+; NGT, below threshold FPIR

*above threshold first phase insulin release (FPIR)

with Number of Subjects at Risk

35% 5-year risk in those with 2 or more antibodies and normal glucose tolerance

- Why mIAA+?
 - Original insulin autoantibody assay (IAA) used in Diabetes Prevention Trial.
 - Post-hoc analysis of that trial identified that those with high levels of IAA had an apparent benefit of treatment:
 4-year delay in diabetes
 - Next generation of insulin autoantibody assay (mIAA); only included those with post-hoc benefit

HISTORICAL PERSPECTIVE: DIABETES PREVENTION TRIAL: KEY INFORMATION ABOUT NATURAL HISTORY

A Subset with IAA Confirmed > 80 nU/ml Suggested Potential 4.5-5-year Delay of T1D

Diabetes Care 2005; 28:1068-76

Delay in T1D was Most Evident in Subjects with Baseline IAA ≥ 300: Up to10 years

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Development of T1D (ADA criteria) Two of the following on separate days
 - OGTT on two separate days*
 - Fasting ≥ 126 mg/dl
 - 2 hour ≥ 200 mg/dl

OR

Clear symptoms and random glucose ≥ 200 mg/dl

*~2/3 of those diagnosed with T1D was from two OGTTs

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Maximum Information Trial: subjects are recruited and followed until the required amount of information is achieved.
 - If 50/year...duration of ~8 years
- Effect size: 40% risk reduction
- Power: 85%; one-sided test

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Safety
 - Dose ranging test study in healthy humans – no effect on glycemia
 - Prior exposure DPT-1 oral insulin trial, same population and age range – no associated AE
- Efficacy
 - Animal models suggestive of efficacy
 - Primary endpoint DPT-1 negative, post hoc analysis of high IAA subgroup suggestive of significant effect (4 to 10 year delay in onset)

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Study start 2007
- N=436 randomized;
 304 to primary stratum
- No therapy related AEs

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- High benefit if efficacy demonstrated
- Strong pre-clinical and clinical data with above average likelihood of efficacy
- Minimal risk to all age groups

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Oral Insulin Prevention Trial

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

ABATACEPT PREVENTION TRIAL

- Population to be included
 - Risk estimate
 - Entry criteria
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- 5-year risk of T1D: 35%
- Relative with T1D
- 2 or more ab+, not mIAA
- Normal Glucose Tolerance

Cumulative Incidence Curve

with Number of Subjects at Risk

35% 5-year risk in those with 2 or more antibodies and normal glucose tolerance

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

 Development of Abnormal glucose tolerance or T1D

Abnormal Glucose Tolerance

- OGTT on two separate days*
 - Fasting ≥ 110 mg/dl and <126 mg/dl
 - 2 hour \geq 140 mg/dl and <200 mg/dl
 - 30, 60, 90 min ≥ 200 mg/dl

OR

Diabetes

T1D by ADA criteria

*~2/3 of those diagnosed with T1D was from two OGTTs

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Effect size: 40% risk reduction
- Power: 80%; two-sided test at 0.05
- N= 206; randomized 1:1
- Estimated enrollment 50/year; recruitment 4 years – outcome at 6 years

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Safety
 - FDA approved in kids (age 6+) and adults for Adult RA, Juvenile RA;
 >60,000 total person/years of exposure
 - Prior exposure in 112 T1D new onset subjects ages 6-45; no significant treatment related AE
 - Expected AEs = infusion reactions; infections; not expected with limited duration of therapy (12 months)
- Efficacy
 - Animal models suggestive of efficacy
 - New onset trial with positive result

Abatacept (CTLA4-Ig) (co-stimulation blockade)

TrialNe

The estimates are from the ANCOVA model adjusting for age, sex, baseline value of C-peptide, and treatment assignment. Y-axis is on a log(y + 1) scale. Error bars show 95% Cls. AUC=area under the curve.

Moran, Lancet 2012

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Study start 2013
- N=65 randomized;
- No therapy related AEs

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- High benefit if efficacy demonstrated
- Strong clinical data in other diseases and initial data in T1D with above average likelihood of efficacy
- Slightly greater than minimal risk to all age groups

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Abatacept Prevention Trial

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

TEPLIZUMAB PREVENTION TRIAL

- Population to be included
 - Risk estimate
 - Entry criteria
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- 5-year risk of T1D: 78%;
 - Varies by age
- Relative with T1D
- 2 or more ab+,
- Abnormal glucose
 Tolerance

Risk of T1D in ab+ relatives with abnormal glucose tolerance

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Development of T1D (ADA criteria) Two of the following on separate days
 - OGTT on two separate days*
 - Fasting ≥ 126 mg/dl
 - 2 hour ≥ 200 mg/dl

OR

Clear symptoms and random glucose ≥ 200 mg/dl

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Effect size: 60% risk reduction
- Power: 80%; two-sided test at 0.05
- N= 71; randomized 1:1
- Complete recruitment within 3 more years and follow for an additional 4 years

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Safety
 - Prior exposure in >600 T1D subjects ages 8-45;
 - Expected AEs = transient
 lymphopenia, cytokine release
 syndrome, infections, rash
- Efficacy
 - Animal models suggestive of efficacy
 - New onset trials with positive result (and one with negative result overall)

Teplizumab (hOKT3γ1 (ala-ala): AbATE

Immune Tolerance Network

Heroid, Lancet Endo

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- Study start 2011
- N=41 randomized;

- Population to be included
- Primary outcome
- Planning parameters
- Choice of Intervention
- Current status
- Summary

- High benefit if efficacy demonstrated
- Clinical data in T1D suggestive of above average likelihood of efficacy
- Greater than minimal risk to all age groups

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Teplizumab Prevention Trial

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

PLANNING STAGES; NEW PREVENTION TRIAL

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Aultiple T1D-associated islet autoantibodies with normal glycemic control

Oral Insulin Prevention Trial Abatacept Prevention Trial

Stage 2: Autoimmunity+/Dysglycemia+/Asymptometic T1D

Multiple T1D-associated islet autoantipodies with glucose intolerance or during cemia

Teplizumab Prevention Trial

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

Progression to Type 1 diabetes: DPT-1

New therapy Prevention Trial

- Population to be included
 - Risk estimate
 - Entry criteria
- Primary outcome
- Planning parameters
- Choice of Intervention

- OGTT = Diabetes
- HbA1c <6.5%
- No insulin therapy

Kevan Herold, Jeff Krischer

New therapy Prevention Trial

- Population to be included
- Primary outcome

 Proportion of participants who revert to non-DM OGTT at 6 months

Kevan Herold, Jeff Krischer

PREVENT ISLET AUTOIMMUNITY

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Oral Insulin Prevention Trial

Abatacept Prevention Trial

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia Teplizumab Prevention Trial

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

Risk of T1D with ≥ 2 antibodies does not appear to level off

Risk and Benefit Considerations

- Current evidence supports the concept that essentially ALL relatives with two or more antibodies will develop clinical diabetes at some time
- Thus, islet autoimmunity could be considered a disease like hypertension

What defines a disease to be treated? First, give it a name

		Lab results		cal s and otoms	Later consequence s	Treatment
	Clinical presentation of	Abnormal HbA1c. Fasting and 2	YES		YES: complications	Insulin
1	hyperglycemi a and symptoms	hour elevated		Islet Autoir	nmunity	
2	"Silent" diabetes	Normal HbA1c Normal framg 2^{L} .our ≥ 200	NO		YES: Symptomatic DM	??? Insulin
3	Abnormal glucose tolerance	Normal HbA1c Normal fasting 2 hour 140- 199	NO		YES: 85% with clinical T1D in 3-5 years	???

Is islet immunity a disease that should be treated?

Disease	Hypertension*
Consequence within 4-5 years	2.4/100 get coronary heart disease (CAD) and 1.9/100 have stroke
Relative risk reduction (effect size) of treatment	Treating HTN reduces CAD by 16% and stroke by 40% (relative risk)
Absolute benefit of treatment	Treating 100 HTN patients prevents 2 people from getting CAD or stroke

*Hebert PR, Moser M, Mayer J, et al. Arch Intern Med 1993; 153:578

Proposed Stages of Type 1 Diabetes

Single T1D-associated islet autoantibody

Prevent Islet Autoimmunity

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Oral Insulin Prevention Trial

Abatacept Prevention Trial

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Teplizumab Prevention Trial

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

FUTURE THINKING: OTHER ENDPOINTS TO BE EXPLORED

Other potential endpoints?

, Transition time

Summary

- Current Prevention Trials: Rationale, planning parameters
 - Oral Insulin
 - Abatacept
 - Teplizumab
- Additional Planned Prevention Trials: Rationale, planning parameters
 - Silent Diabetes
- Newer Considerations
 - Other intermediate risk parameters
 - Risk beyond 5 years
 - Islet autoimmunity as a disease
 - Islet autoimmunity prevention trial

Use of risk detection and staging for design of prevention clinical trials

Thank You

Benefits of Screening/Risk Detection

Desmond Schatz MD Professor of Pediatrics University of Florida College of Medicine

We Cannot Afford to do Nothing Current Status Quo in 2014 Unacceptable

- Epidemic worldwide
- Increasing burden to individual and society
- No reduction in acute complications
- Potential benefits of improved glycemic control reaching a minority of patients
- Even current `successful' immune interventions after diagnosis are of questionable translation

Burden of Diabetes in USA (2012)

÷

Diabetes Rising

Prevalence/Incidence:

- 24.9 million Americans
 (29 million 2014)
- 6.3 million undiagnosed
- 1.6 million cases/year
- 10% type 1 (1/300)
 - 2 million

Morbidity/Mortality

High rate as evidenced by:

- > 246,000 deaths/ > 600/day
- Shortened life span
- 2-4x risk MI, stroke
- 75% hypertensive
- 47,000 new cases RD/yr
- 12,000 24,000 new cases blindness/yr
- >82,000 amputations/yr

Economic Burden

2012 Medical costs:

- \$245 billion
- ~ 1/8 health care dollars
- 27% of all medications
 (\$77 billion of \$286 billion)
- Type 1 disproportionately 个

Diabetes Care 36: 1033-1046, 2013

Falling Short of Target: HbA1c ≤7.5% by Age Group

Ultimate Goal..... Public Health Screening

Identification of a burdensome disease with the long-term goal of reducing the incidence and mortality for that disease in the subjects being examined

Does T1D Fulfill Requirements for a Public Health Screening Program?

- Cost/benefit to individual and society: YES
- Disease detected early enough to intervene: YES
- Effective method for identifying those eligible for intervention (sensitivity, specificity, positive predictive value): YES
- Credible intervention must be available, i.e., safe/efficacious: NOT YET

Current `Screening' = Risk Detection

Why Screen in 2014?

- Better understanding of natural history of pre-diabetes
- Gain insight into immunopathogenesis
- Make early diagnosis (decrease morbidity/mortality)
- Identify individuals for prevention trials
- Without prevention there will NEVER be a cure....

Screening Enables Earlier "Diagnosis"Decreases Prevalence of DKA

NEWBORN GENETIC SCREENING

- Barker et al Diabetes Care 27 1399-1404, 2004
- Heikka et al Diabetes Care 30 861-66, 2007
- Winkler et al Pediatr Diabetes 13 308-13, 2012
- Larsson et al Diabetes Care 34 2347-52 2011

ISLET AUTOANTIBODY SCREENING

Greenbaum et al Diabetes 2001; 50:470-476

DKA Morbidity and Mortality = Cerebral Edema

UK study of DKA (Edge et al 2001 Arch Dis Child)

CE: 1.19%, 24% mortality, 35% morbidity. N= 2,940

Canadian Study – Case:Control (Lawrence et al. J Peds 2005)

- CE: 0.51% (13 cases). 23% mortality, 15% morbidity
- Swedish Study of DKA (Hanas et al. Diabet Med 2007)
 - CE: 0.68% (2 cases). No mortality, 1 neuro sequelae, n = 292

Newborn TEDDY Screening Reduces DKA Rates in < 2 year olds

Study	Total DKA		
	Under 2 years	P Value	
TEDDY	16.1%		
Sweden Registry	39.5%	0.02	
SEARCH	50.0%	< 0.0001	
Finland Registry	44.8 %	<0.0001	
German Registry	54%	<0.0001	

Larsson et al Diabetes Care 34, 2347-52 2011

Newborn TEDDY Screening Reduces DKA Rates in < 5 year olds

Study	Total DKA	
	Under 5 years	P Value
TEDDY	13.1%	
Sweden Registry	16.9%	0.45
SEARCH	36.4%	<0.0001
Finland Registry	18.7%	<0.11
German Registry	32.2%	<0.0001

Larsson et al Diabetes Care 34, 2347-52 2011

Prevention of hospitalization at T1 DM onset *DAISY, Denver, children, ages 0-11, 1999-2002*

Barker J, et al. Diabetes Care 2004

HbA1c at Diagnosis in DAISY Cohort

HbA1c At Diagnosis and First 2 Years in DiPiS

Will earlier diagnosis and onset of insulin replacement therapy in T1D lead to greater preserved functional beta cell mass and decreased insulin dose requirements over time and decreased risk of hypoglycemia and long-term diabetic complications?

DCCT: Impact of Preserved C-Peptide on Hypoglycemia & Retinopathy

DCCT Research Group. Ann Intern Med 1998;128:517

CONCLUSION

Screening should be performed in the context of defined research questions

Diabetes Care 37 (Suppl), 1 S18, 2014.

As soon as an intervention is shown to be safe and efficacious in slowing progression of Type 1 diabetes, wide-scale screening should begin

Biomarkers in the Early Stages of T1D

Åke Lernmark, Professor Department of Clinical Sciences Lund University/CRC, Malmö, Sweden

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia-/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

Current and Candidate Biomarkers: Risk Detection

1: Sensitivity, specificity and predictive value

2: *Metabolomics:* cord blood biomarkers

3: *Systems Biology:* will it define seroconversion to yield new biomarkers

4: *Genomics:* HLA and Non-HLA genetic factors

5: *Autoimmunity:* next generation cellular and humoral tests

6: Summary

Sensitivity and specificity: Will "omics" do the trick?

Screening strategy: Step One: inclusive – false positives accepted. Step Two: selective – false positives ruled out.

METABOLOMICS IN THE CORD BLOOD-LOW PHOSPHOLIPIDS INCREASED THE RISK FOR T1D

CORD BLOOD LIPIDOMICS: Low phospholipids a biomarker for increased T1D risk.

ORIGINAL ARTICLE

Cord Serum Lipidome in Prediction of Islet Autoimmunity and Type 1 Diabetes

Matej Orešič,¹ Peddinti Gopalacharyulu,¹ Juha Mykkänen,^{2,3} Niina Lietzen,¹ Marjaana Mäkinen,^{2,3} Heli Nygren,¹ Satu Simell,^{2,3} Ville Simell,^{2,3} Heikki Hyöty,^{4,5} Riitta Veijola,⁶ Jorma Ilonen,^{7,8} Marko Sysi-Aho,¹ Mikael Knip,^{9,10,11,12} Tuulia Hyötyläinen,¹ and Olli Simell^{2,3}

tidylcholines. A molecular signature was developed comprising seven lipids that predicted high risk for progression to T1D with an odds ratio of 5.94 (95% CI, 1.07–17.50). Reduction in cholinecontaining phospholipids in cord blood therefore is specifically associated with progression to T1D but not with development of β -cell autoimmunity in general. *Diabetes* 62:3268–3274, 2013

ORIGINAL ARTICLE

Decreased Cord-Blood Phospholipids in Young Age-at-Onset Type 1 Diabetes

Daria La Torre,¹ Tuulikki Seppänen-Laakso,² Helena E. Larsson,¹ Tuulia Hyötyläinen,² Sten A. Ivarsson,¹ Åke Lernmark,¹ Matej Orešič,² and the DiPiS Study Group*

in index and control children. In conclusion, metabolomics of umbilical cord blood may identify children at increased risk for type 1 diabetes. Low phospholipid levels at birth may represent key mediators of the immune system and contribute to early induction of islet autoimmunity. *Diabetes* 62:3951–3956, 2013

Future of phospholipids as a biomarker:

Recommendations to pregnant mothers to take folic acid should perhaps be complemented also to take phospholipids (lecithin)?

SYSTEMS BIOLOGY – WILL IT DETECT THE TRIGGER OF ISLET AUTOIMMUNITY?

Systems Biology Approach to detect trigger of seroconversion and beyond.

type 1 diabetes

GENOMICS— IS THERE ROOM FOR INCREASED SENSITIVITY, SPECIFICITY AND PREDICTIVE VALUE?

NEXT GENERATION SEQUENCING (NGS) — DO WE UNDERSTAND ALL VARIANTS? WHAT IS THE ROLE OF NON-CODING SEQUENCES?

Genetic markers and the Risk of T1D Adjusting for sex, ethnicity, family history of T1D

NGS may reduce the frequency of low risk individuals to be randomized to follow up for the risk of either T1D Stage I or II.

Non-HLA genetic factors for type 1 diabetes

Combining HLA with non-HLA genotypes for studies of seroconversion, Stage I or Stage II.

HLA AND 40 SNP

Winkler C, Krumsiek J, Buettner F, Angermüller C, Giannopoulou EZ, Theis FJ, Ziegler AG, Bonifacio E. :Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes. Diabetologia. 2014 Sep 4. [Epub ahead of print]:

Feature selection identified HLA plus nine SNPs from the PTPN22, INS, IL2RA, ERBB3, ORMDL3, BACH2, IL27, GLIS3 and RNLS genes that could achieve similar prediction accuracy as the total SNP set.

T1DGC & DAISY

Valdes AM, Varney MD, Erlich HA, Noble JA. Receiver operating characteristic analysis of HLA, CTLA4, and insulin genotypes for type 1 diabetes. Diabetes Care. 2013 Sep;36(9):2504-7.

Genotyping data sufficient to tag DR3, DR4-DQB1*03:02, CTLA4, and INS were shown to distinguish between subjects with type 1 diabetes and their unaffected siblings.

AUTOIMMUNITY- WHAT ARE THE NEXT GENERATION CELLULAR AND AUTOANTIBODY BIOMARKERS?

Stage I: Islet Autoantibodies

- Number
- Specificity (IA-2, ZnT8)
- Titer (IAA)
- Affinity (GAD)

ISLET AUTOANTIBODY STANDARDIZATION PROGRAM

1986 IMMUNOLOGY OF DIABETES WORKSHOPS (IDW)

WHO STANDARD: ICA , GADA AND IA-2A (JDF Units)

DIABETES AUTOANTIBODY STANDARDIZATION PROGRAM (DASP)

NIDDK STANDARD: GADA AND IA-2A (DK UNITS)

ISLET AUTOANTIBODY STANDARDIZATION PROGRAM (IASP)

Stage I and II Biomarker Challenge

Biomarker that would predict seroconversion:

- Antigen presentation
- CD4+ T cell responses
- CD8+ T cell activation
- B cell activation islet autoantibodies

Stage I and II likely differ in cellular responses.

Wong S, Diabetes 83: 1855-1857, 2014

The age distribution for the appearance of the first autoantibody in the group of children with advanced β-cell autoimmunity (left panels) compared with the age distribution for the secondary autoantibodies appearing after the first autoantibody (right panels).

llonen J et al. Diabetes 62:3636-3640, 2013

Copyright © 2011 American Diabetes Association, Inc.

Possible next generation biomarkers for T1D Stage I and II

AUTOANTIBODY MARKERS

HIGH DENSITY PROTEIN ARRAYS

Massa et al. Serological Proteome Analysis (SERPA) as a tool for the identification of new candidate autoantigens in type 1 diabetes. J Proteomics. 82:263-73, 2013.

Miersch et al. Serological autoantibody profiling of type 1 diabetes by protein arrays. J Proteomics. 94:486-96, 2013.

Zhang et al. A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat Med. 20:948-53, 2014.

and others.....

BIOMARKERS OF ISLET AUTOIMMUNITY

REPORTER ASSAYS

Chen *et al.* Molecular signature differentiate immune states in Type 1 diabetes families. Diabetes. 2014 Apr 23.

GENE EXPRESSION INDIVIDUAL CELLS NEEDED FOR STAGE I AND II

McKinney et al. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat Med. 16:586-91,2010. BIOMARKERS OF BETA-CELL FUNCTION

URINE C-PEPTIDE

Oram et al. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia. 57:187-91, 2014.

DISCHARGE OF INTRACELLULAR MARKERS

Proinsulin, GAD65 and others

miRNA

Next generation biomarkers for T1D Stage I and II: Will they pass the acid tests?

ISLET AUTOANTIBODY STANDARDIZATION PROGRAM	NEWBORN SCREENING STUDIES	FDA REQUIREMENTS OF BIOMARKERS
1986 IMMUNOLOGY OF DIABETES WORKSHOPS (IDW)	DiPP	INTEGRATION OF BIOMARKERS IN GLOBAL DRUG OR BIOTECHNOLOGY PRODUCT DEVELOPMENT GENOMIC BIOMARKERS
WHO STANDARD: ICA , GADA AND IA- 2A (JDF Units)	BABYDIAB	
DIABETES AUTOANTIBODY STANDARDIZATION PROGRAM (DASP)	DAISY	DIFFERENTIAL GENE EXPRESSION
NIDDK STANDARD: GADA AND IA- 2A (DK UNITS)	DiPiS	SIGNATURE FACILITATE DRUG OR BIOTECHNOLOGY
ISLET AUTOANTIBODY STANDARDIZATION PROGRAM (IASP)	TEDDY	PRODUCT DEVELOPMENT

Conclusion: Biomarkers in the Early Stages of T1D

1: Sensitivity, specificity and predictive value should improve above existing assays

2: *Metabolomics:* cord blood biomarkers – low level phospholipids

3: *Systems Biology:* will it yield novel biomarkers of the events leading to seroconversion?

4: Genomics: HLA and Non-HLA genetic factors show promise

5: *Autoimmunity:* next generation cellular and humoral tests will be needed for Stage I and II

6: Stage I and II defined on autoantibodies: what are the spect

THANK YOU

Current and Candidate Biomarkers for Staging of Progression in Early Stages of Type 1 Diabetes

Kevan C. Herold, MD

Departments of Immunobiology and Internal Medici

Yale University

Biomarkers in At-Risk Setting of T1D

Identification, validation, and use of biomarkers in the atrisk setting to understand the progression of Type 1 diabetes and identify subjects for clinical trials.
 Biomarker development will need to go hand-in-hand with characterizing the heterogeneity and pathogenesis of the disease that may improve selection of subjects for prevention studies.

Outline

- Current biomarkers of dysglycemia
- Can beta cell stress and beta cell death be detected in atrisk individuals with normal glucose tolerance?
- Analysis of glucose tolerance in the prediabetic period. What accounts for the heterogeneity of progression?
- Can the cellular immune process that leads to T1D be identified?
- What other modalities may be useful for evaluating individuals at risk?

Natural History of Type 1 Diabetes

Dysglycemia in the prediabetes setting:

- OGTT
 - 120 min plasma glucose: ≥ 140mg/dL (≥7.8mmol/L)
 - 30, 60, or 90 min plasma glucose: >200 mg/dL (≥11.1mmol/L)
- IVGTT: FPIR, other
- Fasting plasma glucose: >110mg/dL (≥6.1mmol/L)
- HbA1c
 - Rising- 10% change
 - Absolute level

Patterns of Metabolic Progression to Type 1 Diabetes in the Diabetes Prevention Trial-Type 1

JAY M. SOSENKO, MD¹ JERRY P. PALMER, MD² CARLA J. GREENBAUM, MD³ JEFFREY MAHON, MD⁴ CATHERINE COWIE, PHD⁵ JEFFREY P. KRISCHER, PHD⁶ H. PETER CHASE, MD⁷ Neil, H. White, md⁸ Bruce Buckingham, md⁹ Kevan C. Herold, md¹⁰ David Cuthbertson, ms⁶ Jay S. Skyler, md¹ The Diabetes Prevention Trial-Type 1 Study Group

tes Care 2006; 29:643-649

Glucose and C-Peptide Changes in the Perionset Period of Type 1 Diabetes in the Diabetes Prevention Trial-Type 1

JAY M. SOSENKO, MD¹ JERRY P. PALMER, MD² LISA RAFKIN-MERVIS, MS, CDE² JEFFREY P. KRISCHER, PHD³ David Cuthbertson, ms⁴ Della Matheson, rn² Jay S. Skyler, md¹

es Care 2008; 31:2188-2192

PERSPECTIVES IN DIABETES

The Metabolic Progression to Type 1 Diabetes as Indicated by Serial Oral Glucose Tolerance Testing in the Diabetes Prevention Trial–Type 1

Jay M. Sosenko,¹ Jay S. Skyler,¹ Kevan C. Herold,² Jerry P. Palmer,³ and the Type 1 Diabetes TrialNet and Diabetes Prevention Trial-Type 1 Study Groups

Key features of metabolic progression in individuals at-risk for T1D

- Glucose levels are increasing at least 2 years before dx
- Despite increasing glucose levels, fasting and overall measures of C-peptide change little until 6 mos before dx
- Peak C-peptide is delayed at least 2 years before dx.
 It occurs even later as diagnosis approaches.
- Although glucose levels increase during

Glucose (mg/dL) and C-peptide (ng/mL) values of DPT-1 participants
(n = 115) with OGTTs 6 months before diagnosis and at diagnosis

	6 months before diagnosis	At diagnosis
Fasting glucose	93 ± 13	$113 \pm 29++$
2-h glucose	155 ± 29	$289 \pm 71 + +$
AUC glucose/120 min	165 ± 23	$240 \pm 48 + +$
Fasting C-peptide	1.16 ± 0.72	$1.41 \pm 1.16 +$
Peak C-peptide	4.57 ± 1.86	$3.86 \pm 2.29 + +$
AUC C-peptide/120 min	3.44 ± 1.42	$2.92 \pm 1.74 + +$
Fasting C-peptide/fasting		
glucose	0.013 ± 0.008	0.012 ± 0.009
AUC C-peptide/AUC		
glucose	0.021 ± 0.009	$0.013 \pm 0.009 + +$

Data are shown as mean \pm SD. +P < 0.01. ++P < 0.001 for differences from 6 months before diagnosis.

Sosenko et al, Diabetes 2012

C-Peptide AUC Is Relatively Flat for the Period Up to 6 months Prior to Diagnosis

Sosenko et al. Diabetes Care 2006; 29:643-649

cell Glucose Sensitivity Decreases Earlier than Other Paramete

The need for a direct measurement of beta cell killing: Problems with existing approaches

- Glucose and HbA1c levels normal until close to diagnosis (Sosenko et al, Diabetes Care 2006; Sosenko et al, Diabetes 2012)
- Elevated glucose levels may only occur after extreme beta cell loss.
- Autoantibodies do not provide direct information on the pathologic process.
- T-cell assays can differentiate patients with T1D from HC, not all labs can perform these and the relationship between the appearance of these cells and beta cell killing has not been evaluated. (Herold et al, Diabetes 2012)

Rationale for an Assay to Measure Beta Cell Death In-Vivo

- Beta cell function affected by environmental factors
- Beta cell death is a silent event
- Methylation is one epigenetic control mechanism that can affect gene transcription.
- When cells die, they release their DNA into the bloodstream.
- The only source of unmethylated insulin DNA should be dead beta cells. This assay is based on the detection of Akunmathylated INA BNA in the serum Twendenthods have been used: nested PCR ("delta") and droplet digital PCR

Identification of beta cell death following autologous islet transplants or successful immune therapy treatment of recent onset T1D

(Lebastchi Diabetes 2013)

Outline

- Current biomarkers of dysglycemia
- Can beta cell stress and beta cell death be detected in atrisk individuals with normal glucose tolerance?
- Analysis of glucose tolerance in the prediabetic period. What accounts for the heterogeneity of progression?
- Can the cellular immune process that leads to T1D be identified?
- What other modalities may be useful for evaluating individuals at risk?

Cellular assays: T cell immunoblot and T cell proliferation assays

Sensitivity and specificity of the assays

	n	Sensitivity	Composite 95% CI	Specificity	Composite 95% CI
T-cell proliferation	52	0.58	0.37-0.79	0.91	0.79-1.0
Immunoblot	47	0.94	0.83-1.0	0.83	0.69 - 0.97
GAD65	62	0.74	0.57 - 0.91	0.85	0.72 - 0.95
ICA512	62	0.52	0.30-0.74	0.97	0.92 - 1.0

Seyfert-Margolis, Diabetes, 2006

TrialNet Analysis of Immune Cellular Studies

TABLE 2

Numbers of specimens assayed and measures* of the ability to discriminate between subjects with and without type 1 diabetes for autoantibodies alone[†] and each T-cell assay

	Specimens evaluable‡	Indeterminant§	Sensitivity	Specificity	Correct classification	Positive predictive value	Negative predictive value	Odds ratio∥	Р
Autoantibodies (one									
or more)	296 (99.7)	_	83	92	88	91	84	56.9	< 0.0001
Anti-GAD65	296 (99.7)	_	68	98	83	98	76	124.8	< 0.0001
Anti-ICA512	296 (99.7)	_	58	99	78	98	70	119.3	< 0.0001
Anti-ICA	296 (99.7)	_	59	94	76	91	69	22.6	< 0.0001
Cellular immunoblot	122 (68.2)	6(4.9)	74	88	81	86	77	21.7	< 0.0001
T-cell proliferation	151 (84.4)	0	60	69	64	66	63	3.36	0.0041
Tetramer	117 (76.5)	32(27.4)	46	72	59	63	57	2.10	0.076
U.SELISPOT	87 (56.8)	0	35	65	50	51	50	1.09	0.95
U.KELISPOT	109 (100)	8 (7.3)	61	69	65	66	64	3.44	0.0026

Insulitis May be Visualized by MRI

Gaglia JL et al, J Clin Invest. 2011 Jan 4;121(1):442-5

Imaging beta cell mass with ¹⁸F-fluoropropyl-Dihydrotetrabenazine and PET

Normadin et al, J Nucl Med 2012

Conclusions

- Increased levels of unmethylated *INS* DNA (reflecting beta cell death) can be detected about 1 ½-2 yrs before the diagnosis of T1D
- Insulin secretory dysfunction corresponds to episodes of increases in levels of unmethylated *INS* DNA in at-risk subjects
- Individuals at very high risk for T1D have elevated levels of unmethylated INS DNA in their serum
- Insulin secretory dysfunction is the feature that distinguishes individuals who meet diagnostic laboratory criteria of "diabetes" from those who do not

What else do we need?

- The reason for the delayed insulin secretion is not known. This is associated with an increase in unmethylated *INS* (beta cell death) but there is a reversible component.
- Additional measures of beta cell stress may identify more frequent episodes that warrant interventions with cellular protective agents.
- The relationship between cellular immune assays and beta cell killing and stress are under investigation.
- Insulitis imaging and quantitative measurement of

Acknowledgements

- Jeff Bluestone
- Eitan Akirav
- Sahar Usmani-Brown
- Michel Ledzet
- Jasmin Lebastchi
- Nicole Sherry
- Jake Kushner
- Craig Beam

- Funding
 - ITN
 - TrialNet
 - NIDDK
 - NIAID
 - JDRF
 - Brehm Coalition
 - Howalt family

Early Stages of T1D

Richard Insel JDRF

Scientific Framework of the Workshop

- T1D is a disease continuum that begins prior to symptomatic disease
- Risk of developing T1D can be identified and quantified v
- T1D has well-defined, reproducible early stages that reach a point of inevitability of symptomatic T1D
- Relative rate of progression to symptomatic T1D can be predicted with appreciable accuracy
- The ability to screen for risk and stage T1D prior to symptomatic T1D has benefit today, and in the future, will provide a unique opportunity to intervene to delay, and ultimately prevent, the onset of clinical symptoms and life-long insulin dependence v

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

Children with Multiple Islet Autoantibodies Progress to Symptomatic Diabetes

JAMA. 2013;309(23):2473-2479.

Also in General Population Children

JAMA. 2013;309(23):2473-2479

5- and 10-Year Risk of Progression to Symptomatic T1D with Multiple Islet Autoantibodies ≤ Age 5 Years is 51% and 75%

And the Lifetime Risk Approaches 100%

George Eisenbarth *"The clock to T1D has started when islet antibodies are first detected".* Paradigm shift for staging of type 1 diabetes before clinical onset

Estimated Progression to Symptomatic T1D Risk is persistently around 11% per year

300 20.0 Number Diabetes-free 167 17.5 94 15.0 12.5 10.0 10 7.5 5.0 2.5 0.0 1 9 10 11 12 13 14 15 0 8 5 10 15 20 25 30 35 40 45 50 0 Year of follow-up after seroconversion Follow-up (years)

Diabetes incidence per 100 per year

Multiple Islet Autoantibodies Are Detected Early in Life

Incidence of islet autoantibodies in cases that become multiple Abs amongst unselected FDRs

Ziegler, Bonifacio, Diabetologia 2012

Immune Markers of Symptomatic Diabetes Risk in First Degree Relatives

5-Year Risk Prevalence

Single antibody <10% 3.1%
Multiple antibodies 30-50% 2.2%

Even in the presence of other risk markers, age is important.

T1D-free curves by age categories among first degree relatives with multiple autoantibodies.

What about children with single islet autoantibodies?

Certain single Ab positives have a risk

- Multiple at seroconversion (SC)
- --- IAA at SC, multiple later
- GADA at SC, multiple later
- High risk single (high affinity, trunc GAD, ELISA GAD, IA2)
- Low risk single (low affinity or wrong epitope)

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D Multiple T1D-associated islet autoantibodies with normal glycemic control

Stage 2: Autoimmunity+/Dysglycemia+/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

Metabolic Markers of Symptomatic Diabetes Risk in Multiple Antibody Positive, First Degree Relatives

5-Year Risk Prevalence

Abnormal Oral Glucose Tolerance Test 75-80% 0.7%

5-Year Risk of Progression to Symptomatic T1D in T1D Relatives with Dysglycemia is 75-80% (DPT-1) 1.0 0.9 Proportion without type 1 diabetes 0.8 0.7 0.6 0.5 Normal Glucose Tolerance 0.4 Value< 0.001 (Log Rank Test) 0.3 Indeterminate only 0.2 Number at Risk Combined 35 16 51 19 0.1 64 20 T only 410 0.0 Years Followe STRATA: Comb IFG + (IGT or Indet) Indet Only - IGT Only

Again, age is a modifying factor.

Early Stages of Type 1 Diabetes: Diagnostic Criteria

Stage	Stage #1 Autoimmunity + Dysglycemia – Asymptomatic	Stage #2 Autoimmunity + Dysglycemia + Asymptomatic	Stage #3 New Onset Symptomatic T1D
Diagnostic Criteria	 Multiple AutoAbs No impaired glucose tolerance or impaired fasting glucose 	 Multiple AutoAbs Dysglycemia: Impaired Glucose Tolerance and/or Impaired Fasting Glucose FPG >100 mg/dL OGTT: 2h PG ≥140mg/dL; 30, 60, 90 min PG ≥200 mg/dL Random plasma glucose ≥200 mg/dL HbA1c ≥5.7% Increasing HbA1c 	Clinical Symptoms

Early Stages of Type 1 Diabetes: Diagnostic Criteria

Stage	Stage #1 Autoimmunity + Dysglycemia – Asymptomatic	Stage #2 Autoimmunity + Dysglycemia + Asymptomatic	<pre>??Stage #2A Autoimmunity + Diabetic IGT +/- Diabetic OGT Asymptomatic</pre>
Diagnosti c Criteria	 Multiple AutoAbs No impaired glucose tolerance or impaired fasting glucose 	 Multiple AutoAbs Dysglycemia: Impaired Glucose Tolerance and/or Impaired Fasting Glucose FPG >100 mg/dL OGTT: 2h PG ≥140mg/dL; 30, 60, 90 min PG ≥200 mg/dL Random plasma glucose ≥200 mg/dL HbA1c ≥5.7% Increasing HbA1c 	 Multiple AutoAbs "Diabetic"Impaired Glucose Tolerance and/or Impaired Fasting Glucose FPG ≥126 mg/dL OGTT: 2h PG ≥200mg/dL HbA1c ≥6.5%

Early Stages of Type 1 Diabetes: Diagnostic Criteria

Stage	Stage #1 Autoimmunity + Dysglycemia – Asymptomatic	Stage #2 Autoimmunity + Dysglycemia + Asymptomatic	Stage #3 New Onset Symptomatic T1D
Diagnostic Criteria	 Multiple AutoAbs No impaired glucose tolerance or impaired fasting glucose 	 Multiple AutoAbs Dysglycemia: Impaired Glucose Tolerance and/or Impaired Fasting Glucose FPG >100 mg/dL OGTT: 2h PG ≥140mg/dL; 30, 60, 90 min PG ≥200 mg/dL Random plasma glucose ≥200 mg/dL HbA1c ≥5.7% Increasing HbA1c 	Clinical Symptoms

Proposed Stages of Type 1 Diabetes

Stage 1: Autoimmunity+/Dysglycemia–/Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with normal glycemic control

Oral Insulin Prevention Trial Abatacept Prevention Trial

Stage 2: Autoimmunity+/Dysglycemia+, Asymptomatic T1D

Multiple T1D-associated islet autoantibodies with glucose intolerance or dysglycemia

Teplizumab Prevention Trial

Stage 3: Symptomatic T1D

Typical symptoms of clinical disease (polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis, etc.)

Early Stages of Type 1 Diabetes: Potential Clinical Trial Endpoints

Stage	Stage #1 Autoimmunity + Dysglycemia – Asymptomatic	Stage #2 Autoimmunity + Dysglycemia + Asymptomatic
Potential Endpoints of Clinical Trials	 Dysglycemia prevented Autoimmunity regulated Symptoms delayed, Insulin dependence delayed, prevented 	 Dysglycemia reversed FPG normalized IGT fails to progress to IFG HbA1c restored to normal levels; Increasing HbA1c reversed Autoimmunity regulated Symptoms delayed; Insulin dependence delayed, prevented

Desired Outcomes of the Workshop

- Provide a new standardized taxonomy and staging approach for human T1D
- Accelerate clinical development of therapies to prevent symptomatic T1D
- Aid design of clinical trials through use of risk profiles, subject stratification, and stage-specific trial endpoints
- Promote precision medicine: Tailoring of optimal therapies to specific individuals at specific stages of T1D
- Provide an approach for the benefit/risk framework in the early stages of T1D

October 10, 2014 Bethesda, MD